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ABsSTRACT: Application of stream water-quality models in decision making has been hampered by a lack of
data appropriate for minimization of model-simulation uncertainty. A method for determining data needed to
reduce model-prediction uncertainty is illustrated in this paper. First-order reliability analysis is applied to de-
termine (1) the model parameters that significantly affect model-prediction uncertainty; and (2) the constituents
for which model-prediction uncertainty is unacceptable. Additional data are required to reduce uncertainty in
the parameters that significantly affect constituents with high prediction uncertainty and consequently in model
prediction. The method is demonstrated for multiconstituent water-quality modeling on the Passaic River in New
Jersey applying QUAL2E. The model-prediction uncertainty of dissolved oxygen, biochemical oxygen demand,
ammonia, and chlorphyll a is considered. For this example, only the reaeration rate and the algal maximum-
specific-growth rate contribute significant uncertainty to model prediction. The effect of reducing the uncertainty
in the reaeration rate and algal maximum-specific-growth rate on the uncertainty on predicted dissolved oxygen

and chlorphyll a, respectively, is demonstrated.

INTRODUCTION

Planning and management activities require the assessment
of hydraulic and water-quality conditions beyond the range of
observed field data. Water-quality models must be formulated
that are general enough to (1) describe observed conditions;
and (2) predict planning scenarios that may be substantially
different from observed conditions. In stream water-pollution
control, water-quality models are applied to assess the maxi-
mum pollutant releases allowed from wastewater treatment
plants and nonpoint-source-pollution controls so that pollutant
levels in the receiving stream meet water-quality standards.
Billions of dollars have been spent on wastewater treatment
plant construction and improvement to meet maximum release
levels selected in part on the basis of water-quality modeling.
Yet, despite the large investment, water quality in many
streams has not substantially improved. Uncertainty in simu-
lations from water-quality models has contributed to the un-
expectedly poor results of some stream water-pollution control
plans.

Collection of water-quality data is relatively expensive.
Thus, water-quality models developed for many rivers have
been calibrated and verified with data collected prior to model
development during surveys designed to check basinwide wa-
ter quality for regulatory compliance. These data are typically
inadequate for the following reasons:

* Many key water-quality constituents or inputs are not
measured because the purpose of data collection is a gen-
eral survey of water-quality conditions in the stream sys-
tem and not the development of a water-quality model;
e.g., the Potomac River water-quality model (ICPRB
1991).

* There is a tendency to sample certain water-quality con-
stituents because they are easy to sample, not because
they increase knowledge of key water-quality processes
(Reckhow 1979).

* The frequency of data collection is usually insufficient.

'Hydr. Engr., Water Resour. Div., U.S. Geological Survey, 102 E. Main,
4th Floor, Urbana, IL 61801.

*Asst. Prof., Kon-Kuk Univ., Dept. of Agric. Engrg., Kwangjin-Ku,
Mojin-Dong, 93-1, Seoul, South Korea, 133-701.

Note. Discussion open until September 1, 1996. To extend the closing
date one month, a written request must be filed with the ASCE Manager
of Journals. The manuscript for this paper was submitted for review and
possible publication on November 1, 1994. This paper is part of the
Journal of Water Resources Planning and Management, Vol. 122, No.
2, March/April, 1996. ©ASCE, ISSN 0733-9496/96/0002-0105~0113/
$4.00 + $.50 per page. Paper No. 9488,

These inadequacies force water-quality modelers to make
weakly supported assumptions regarding model parameters or
inputs, thus increasing model-prediction uncertainty and ad-
versely affecting decision making for water-pollution control.

This paper describes and demonstrates a method for deter-
mining the data required to reduce model-prediction uncer-
tainty. First-order reliability analysis (FORA) is applied to an-
alyze the uncertainties in simulation of stream water quality
for the Passaic River in New Jersey with a complex, multi-
constituent model, QUAL2E (Brown and Barnwell 1987).
FORA application provides insight on model performance in
terms of key parameters requiring detailed study and the over-
all model-prediction uncertainty. The objective of this study is
to examine the uncertainty in a typical example stream water-
quality model applied by regulatory agencies for waste-load
allocation and other purposes. Thus, model identification ef-
fects on model-prediction uncertainty, discussed in detail by
Beck (1987), are not considered in this paper. Further, the goal
of this study is to identify the reaction coefficients that signif-
icantly affect the uncertainty of estimates of various key, wa-
ter-quality constituents so that the uncertainties in these coef-
ficients can be reduced by a carefully designed sampling
program. Therefore, reliability analysis with respect to reaction
coefficients is described, and the uncertainties in the other
model parameters (hydraulic and geometric characteristics, in-
itial conditions, pollutant loads, etc.) are omitted from the anal-
ysis.

METHODS FOR DETERMINATION OF KEY SOURCES
OF UNCERTAINTY

A number of researchers [e.g., Gardner et al. (1981); Beck
(1987); Yeh and Tung (1993)] have shown that traditional sen-
sitivity analysis, wherein basic variables are perturbed one at
a time and the sensitivity of model output to the perturbation
in each variable is observed, is not appropriate for determining
the sources of uncertainty that most affect model output and,
thus, require more detailed study. The sensitivity coefficient
for a given parameter does not account for the likelihood that
the parameter is different from its ‘best’’ value. Therefore, a
highly sensitive parameter that is known with low uncertainty
may have much less effect on the uncertainty of model output
than a much less sensitive parameter that is highly uncertain.
Reliability-analysis methods based on muitiple simulations
(e.g., Monte Carlo or Latin Hypercube simulation) and FORA
allow consideration of the combined effects of parameter sen-
sitivity and parameter uncertainty in the determination of the
key parameters affecting model-prediction uncertainty.
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Simulation-Based Methods

For the simulation-based methods, two approaches may be
used to infer the key parameters. In the first approach, the
correlation between the parameter values and the model-output
values is assessed, and the parameters with significant positive
or negative correlations are determined to be important. Cor-
relation analysis may be performed in four ways. The simple
correlation coefficient (CC) and partial correlation coefficient
(PCC) between parameter values and model-output values can
be calculated to examine the linear relations between the
model parameters and the model output. The CC and PCC can
also be calculated for the ranked parameter values and ranked
model-output values to examine possible nonlinear relations
between the model parameters and the model output. Gardner
et al. (1981) note that if the modeler is interested in the un-
derlying error-propagation properties of a model, the PCC is
the most useful. In the field, all hydraulic and water-quality
characteristics are subject to variability and are measured with
error. These field-data errors cannot be controlled, and their
effect on prediction uncertainty cannot be removed as in PCC
analysis. Thus, in the design of field sampling programs, the
ranking of parameters according to the CC is most relevant.
Gardner et al. (1981) provide an example of CC and PCC
analysis of model-parameter values and model-output values
for a nonlinear stream-ecosystem model. Jaffe and Ferrara
(1984) provide an example of rank correlation analysis for a
mode] of sediment-water column interactions for hydrophobic
pollutants. Yeh and Tung (1993) provide a comparison be-
tween standard correlation analysis and rank correlation anal-
ysis for a model of the movement of borrow pits in alluvial
streams.

A second approach applies regional sensitivity analysis
(RSA) (Hornberger and Spear 1981) to determine the key
model parameters. In RSA a reasonable range for model output
is hypothesized. Model parameters for simulations with output
falling in the reasonable range are recorded as set A, and
model parameters for simulations with output falling outside
the reasonable range are recorded as set B. Empirical proba-
bility distributions are developed for model-parameter values
for simulations in each set. These empirical probability distri-
butions are compared [e.g., using the Kolmogorov-Smirnov
test; Law and Kelton (1991), pp. 387-391]. If sets A and B
are significantly different for a given parameter, that parameter
significantly affects model-prediction uncertainty. Otherwise,
that parameter is not important to model-prediction uncer-
tainty.

First-Order Reliability Analysis (FORA)

In FORA, a Taylor series expansion of the model output is
truncated after the first-order term

P
C=gX) + D, (6 — x)(38/3x)x, )
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where C = concentration of the constituent simulated in the
selected water-quality model; g( ) = functional representation
of the procedures simulating constituent C in the water-quality
model; X, = the vector of uncertain basic variables (model-
input variables, model parameters, etc.) representing the ex-
pansion point; p = number of basic variables x; and the
subscript X, indicates that the partial derivative is taken at the
expansion point.

In FORA applications to water-resources engineering, the
expansion point is commonly the mean value (or some other
convenient central value) of the basic variables. Thus, the ex-
pected value and variance of the performance function are
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where o, = standard deviation of C; and X,, = vector of mean
values of the basic variables. If the basic variables are statis-
tically independent, the variance of C becomes

Var(€) = o2 ~ D [(9g/0%)n 0T @)
=]

where o; = the standard deviation of basic variable i. In some
cases, the derivatives may be determined analytically.

To estimate the cumulative distribution function (CDF) and
probability density function (PDF) of C, it is typically assumed
that C is normally distributed, and the exceedance probability
P: (complement of the CDF) for a given target concentration
C;, is estimated as

Pg=1— ®{(Cr — E[C]oc} &)

where ®{ } is the standard normal integral. The normal (Gauss-
ian) assumption has several practical advantages that are dis-
cussed in detail by Yen et al. (1986) and Melching (1995).

In comparison with the simulation-based methods, simplic-
ity is the primary advantage of FORA. When the Taylor series
expansion is taken at the mean of the basic variables, only the
first two statistical moments of the basic variables and simple
sensitivity calculations are required in FORA. However, when
applied to engineering design problems, the method has sev-
eral theoretical and/or conceptual problems (Melching 1992;
Cheng 1982). The main problem of the method is that a single
linearization of the model-output function at the central values
of the basic variables is assumed to represent the statistical
properties of model output over the complete range of basic
variable values. For nonlinear systems, this assumption be-
comes more inaccurate as the basic variables depart from the
central values. For engineering design, the method may be
especially inaccurate because design failure should result only
because of extreme values of the basic variables describing the
system. The assumption to use a normal distribution for the
model output is only weakly supported, and the method cannot
include available information on basic variable probability dis-
tributions.

FORA, with the expansion at the mean values, has been
applied successfully in water-quality modeling, despite the
conceptual problems. Burges and Lettenmaier (1975) and
Melching and Anmangandla (1992) have found reasonably
good agreement between results from FORA and Monte Carlo
simulation for estimation of statistical characteristics of dis-
solved-oxygen (DO) concentrations simulated with the
Streeter-Phelps (1925) model. Yoon (1994) found reasonably
good agreement between results from FORA and Monte Carlo
simulation for estimation of statistical characteristics of DO,
biochemical oxygen demand (BOD), ammonia, and chloro-
phyll a concentrations simulated with the QUAL2E model
(Brown and Barnwell 1987). In the Monte Carlo simulations
done by Burges and Lettenmaier (1975) and Yoon (1994) all
parameters were normally distributed, whereas in the Monte
Carlo simulations done by Melching and Anmangandla (1992)
cases where all parameters were normally, lognormally, uni-
formly, and Gamma distributed were considered.

In FORA, the fraction of model-output variance contributed
by each basic variable can be determined directly from (4) (or
similar formulations for correlated basic variables). This

" FORA approach to determining key model parameters has

been applied to several water-quality models. Chadderton
et al. (1982) applied FORA to determine the relative contri-
butions of reaeration rate, deoxygenation rate, initial DO con-
centration, and BOD load on output uncertainty for the
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Streeter-Phelps (1925) model for streamflow conditions typical
for natural streams. Scavia et al. (1981) applied FORA to de-
termine the relative contributions of seven of 22 model pa-
rameters, initial conditions, and loads on output uncertainty
for a nonlinear, seasonal-food-chain, nutrient-cycle eutrophi-
cation model of Saginaw Bay, on Lake Huron, in Michigan.
Brown and Barnwell (1987) applied FORA to determine the
relative contributions of all parameters in QUAL2E on the
uncertainty of estimates of carbonaceous BOD and DO con-
centrations for the Withlacoochee River in Georgia and
Florida.

Comparison of Methods

Yeh and Tung (1993) compared the results of correlation
analysis, rank correlation analysis, and FORA in determining
the key parameters for a model of the movement of borrow
pits in alluvial streams. The correlation approaches and FORA
resulted in considerably different lists of key parameters. Cor-
relation approaches are used to assess the global importance
(i.e., importance over a wide range of possible basic variable
values) of a basic variable (McKay 1988; Yeh and Tung 1993),
whereas FORA is used to assess the local importance (about
the best estimate of model output) of a basic variable. The
choice of the most appropriate method depends on the model
use. If a model is being developed or validated, global mea-
sures are probably of greater importance than local measures.
For fine tuning model output from models that are considered
well identified and well calibrated, local measures are probably
of greater importance than global measures. In the case studied
in this paper, it is assumed that the model is well identified
and well calibrated and reduction of prediction uncertainty is
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sought. Therefore, the local measures of parameter importance
obtained from FORA are selected. Monte Carlo simulation is
applied to test accuracy of the key parameter identification in
FORA.

EXAMPLE APPLICATION
Description of the Passaic River

The freshwater portion of the Passaic River upstream of
Dundee Dam drains approximately 2,090 km?® in northeastern
New Jersey. The watershed of the Passaic River and the mod-
eled portion of the Passaic River system are shown in Fig. 1.
The Passaic River may be divided into three geographic
regions: the upper, middle, and lower regions (NJDEP 1987).
The upper region is approximately 45 km long, including the
major downstream section of the Dead River and the Passaic
River main stem between the confluence with the Dead River
and the confluence with the Whippany River. The middle re-
gion of the Passaic River is approximately 24 km long and
extends from the confluence with the Whippany River to the
confluence with the Pompton River. The lower region of the
Passaic River is approximately 26.9 km long and extends from
the confluence with the Pompton River to the end of the fresh-
water reach at Dundee Dam. The river upstream of Chatham
in the upper region is significantly steeper than the river down-
stream of Chatham (0.37% slope upstream and 0.028% slope
downstream). The low-flow hydraulics in the downstream por-
tion of the upper region and in the middle region are controlled
by pool and riffle sequences. The middle region is also sub-
stantially affected by five major wetlands (Great Piece Mead-
ows, Hatfield Swamp, Troy Meadows, Black Meadow, and
Bog and Vly Meadow). Over 90% of the lower region is in
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backwater from three low-head dams and the river resembles
ponds in several areas.

Relatively large wastewater flows are discharged to the Pas-
saic River and its tributaries. There are eight major municipal
wastewater treatment plants (WWTPs) in the upper region, one
major municipal WWTP in the middle region, and two major
municipal WWTPs and 35 industrial WWTPs in the lower
region. It was estimated that during the 1981 drought more
than 80% of the streamflow at the Passaic Valley Water Com-
mission at Little Falls was effluent sewage from upstream
WWTPs (NJDEP 1987). The majority of these WWTPs dis-
charge into the Passaic River or its tributaries at locations close
to the river. The main stem of the Passaic River and short
reaches of its main tributaries (Dead River, Whippany River,
Rockaway River, and Pompton River) are simulated in the
model developed by the New Jersey Department of Environ-
mental Protection {1987).

The model prediction uncertainty of four water-quality con-
stituents was considered: DO, carbonaceous BOD (CBOD),
ammonia, and chlorophyll a. These constituents were selected
because they are significant problems in the Passaic River, as
discussed in detail by the New Jersey Department of Environ-
mental Protection (1987) and summarized briefly below. DO
concentrations in much of the mainstem of the Passaic River
are below 4 mg/L and anoxic conditions have been observed.
CBOD was selected because of its strong effect on DO con-
centrations. Persistently high levels of ammonia are present in
the upper and middle regions of the Passaic River. Conse-
quently, the molecular ammonia level (a measure of ammonia
toxicity) may often be above the stipulated limit (0.05 mg/L)
in almost the entire length of the river considered in this study.
Large portions of the lower region of the Passaic River are
highly eutrophic because of large wastewater flows and exten-
sive backwater effects. Thus, chlorophyll a is important as a
surrogate for algae populations.

QUALZ2E Stream Water-Quality Model

In QUAL2E model simulations (Brown and Barnwell
1987), the stream is conceptualized as a string of completely
mixed reactors that are linked sequentially by advective trans-
port and dispersion. Sequential groups of these reactors are
defined as reaches. Each reach is divided into computational
elements with identical length, hydrogeometric properties, and
biological rate constants. The hydrogeometric properties and
biological rate constants may change between reaches, but the
computational-element length remains constant throughout the
simulated stream. Up to 15 water-quality constituents in any
combination selected by the user can be simulated in
QUALZE. Constituents that can be simulated in the model are
DO, CBOD, temperature, algae as chlorophyll @, components
of the nitrogen cycle as nitrogen (organic nitrogen, ammonia,
nitrite, and nitrate), components of the phosphorus cycle as
phosphorus (organic and dissolved phosphorus), coliforms, an
arbitrary nonconservative constituent, and three arbitrary con-
servative constituents. The primary application of QUALZE is
simulation of DO concentration in a stream and the interac-
tions between DO and CBOD, the nitrogen cycle, algae (de-
pendent on the nitrogen and phosphorus cycles), sediment ox-
ygen demand (SOD), and atmospheric reaeration. Details on
these interactions as simulated in QUAL2E are presented in
Brown and Barnwell (1987).

QUALZE was applied to the Passaic River by the New Jer-
sey Department of Environmental Protection (1987). This
model, referred to as QUAL2E-Passaic, was applied in this
study. QUAL2E-Passaic includes 32 reaches (Fig. 1) and 257
computational elements each 0.4 km long to simulate approx-
imately 96 km of the main stem Passaic River and small por-
tions of the main tributaries. Uncertainty analysis subroutines

are included in QUAL2E (QUAL2E-UNCAS) with options for
sensitivity analysis, FORA, and Monte Carlo simulation. The
uncertainty-analysis procedures illustrated in this paper can be
applied to any stream system of interest with QUAL2E-
UNCAS with the number of reaches allowed in QUAL2E-
UNCAS computations increased from 25 as necessary. Com-
putation of the CDF of model output by FORA is not per-
formed in QUAL2E-UNCAS, and the user must apply (5)
manually with the mean and standard deviation computed in
QUAL2E-UNCAS. Whereas the CDF of model output is com-
puted in the Monte Carlo simulation option in QUAL2E-
UNCAS. The work reported in this paper is part of a larger
study of uncertainties in water-quality modeling (Yoon 1994),
and information for some aspects of the larger study could not
be computed with QUAL2E-UNCAS. Therefore, programs for
application of FORA and Monte Carlo simulation were de-
veloped for this study (Yoon 1994) and applied to QUAL2E-
Passaic.

Estimation of Model-Parameter Uncertainties

The most important aspect of applying reliability-analysis
methods, such as FORA and Monte Carlo simulation, for as-
sessment of model-prediction uncertainty, is to characterize
properly the uncertainty in the individual basic variables. The
uncertainty of each parameter was estimated from a literature
review (Zison et al. 1978; Bowie et al. 1985; Brown and Barn-
well 1987) and engineering judgment. QUAL2E-Passaic
(NJDEP 1987) was calibrated for water-quality constituent-
concentration data collected during an intensive 3-day synoptic
study of the Passaic River in August 1983. Multiple measure-
ments of each water-quality constituent of interest, flow, and
temperature were made at 32 locations throughout the Passaic
River representing each of the computational reaches. The
model was verified for two sets of synoptic data collected for
each constituent at each location in October 1983 and Septem-
ber 1984. The verification for September 1984 is particularly
noteworthy because advanced waste treatment became opera-
tional at the Bernards Sewage Treatment Plant on the Dead
River between October 1983 and September 1984. The ad-
vanced waste treatment resulted in a massive change in loads
substantially affecting constituent concentrations as far as 20
km downstream. Therefore, the September 1984 verification
represents a ‘‘significantly perturbed condition relative to the
calibration data’’ providing the type of data set recommended
by Thomann (1982) to provide an adequate test of the model.
Thus, QUAL2E-Passaic was considered an adequate model for
simulation of water quality in the Passaic River and the ma-
jority of estimated coefficient of variation (COV) values were
selected at the high end of the range for typical QUAL2E
applications in Brown and Barnwell (1987, p. 86). The esti-
mated COVs for each model parameter are listed in Table 1.

Some parameters are assumed to have little uncertainty,
whereas SOD and reaeration-rate coefficients are assumed to
have COVs of 30% and 50%, respectively. Wilson and Mac-
leod (1974) reviewed 16 published equations for estimation of
the reaeration-rate coefficient and checked for agreement with
field and laboratory data covering widely different physical
and hydraulic conditions. They found that even the best of the
available equations gives unreliable estimates. House and Ska-
vroneck (1981) compared reaeration-rate coefficients estimated
with 20 published equations to observed values from the pro-
pane-area modified-tracer method on two streams in Wiscon-
sin. The Langbein and Durum (1967) equation, used in
QUAL2E-Passaic, was one of the five most accurate equations
applied considered by House and Skavroneck (1981) with a
mean error of 49% in the estimates of reaeration-rate coeffi-
cients for the Wisconsin streams. The physical characteristics
of the Passaic River are different from those of the Wisconsin
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TABLE 1. Estimated Coefficient of Variation Values for Input
Parameters Based on Literature Review

TABLE 2. Contribution of Key Model Input Parameters to Out-
put Variance of QUAL2E-Passaic

Coefficient Contribu-
of variation tion
Parameter Definition (%) Notes* Parameter (%) Remarks
) (2 (3 4 (M 2) (3
a Evaporation coefficient a 10.0 (a) Lowest DO concentration (reach 3)
KBOD  |5-day to ultimate CBOD conver- 100 3 Reaeration coefficient 49.351 |Reach of interest
sion cqefﬁcxent R 0 1 Reaeration coefficient 25.087 |One reach upstream
b Evaporation goefﬁment b 10. Ammonia oxidation rate 12.299 [Reach of interest
Dust attenuation coefficient 10.0 1 SOD 4428 [One reach upstream
Qs Oxyg.g:;ilg;take by ammonia 591 2 Ammonia oxidation rate 4.015 [One reach upstream
OXil
Momax Algal maximum-specific-growth 10.0 1 (b) Highest CBOD concentration (reach 2)
rate - BOD decay rate 81.800 |Reach of interest
TFACT Aligae/temperature solar radiation 10.0 1 BOD settling rate 13.088 {Reach of interest
actor - - -
Qg Oxygen uptake by nitrate oxidation 2.89 2 (c) Highest ammonia concentration (reach 2)
Qg Oxygen uptake by algae 5.10 2 Ammonia oxidation rate 96.152 |Reach of interest
KNITRF |Nitrification inhibition coefficient 393 2 SOD rate 3.848 |Reach of interest
K CBOD decay rate 25.0 1 - -
K; CBOD settli)rllg rate 25.0 1 (d) Highest chlorophyll a concentration (reach 32)
K, SOD rate 30.0 3 Algal maximum-specific-growth rate | 93.170 |System-wide
K, Reaeration rate coefficient 50.0 4 Algae/temperature solar radiation
B Rate constant for the biological ox- 25.0 1 factor 5.655 [System-wide
idation of ammonia to nitrate
ol Chlorophyll a to algae ratio 5.0 1
@ Algal setdling rate 10.0 ! ues one at a time by 5%, determining the change in concen-
A N°"':;§é’; lllltght extinction 30 1 tration of the constituent of interest, and dividing the change
°© in concentration by the increase in the parameter value. The

*1 = based on the typical range for the coefficient of variation for such
parameters reported by Brown and Barnwell (1987, p. 86); 2 = based on
assuming a triangular distribution with the modeled value at the apex
over the reasonable range for this parameter reported by Brown and Barn-
well (1987, pp. 54-56); 3 = based on a review of U.S. rivers by Bowie
et al. (1985, p. 189); 4 = based on the performance of the Langbein-
Durum equation for small streams in Wisconsin determined by House
and Skavroneck (1981); and 5 = based on engineering judgment.

streams for many reaches. However, the uncertainty deter-
mined for the Wisconsin streams was taken as representative
of a case where the Langbein and Durum equation works well.
Calibration of QUAL2E-Passaic indicated that the Langbein
and Durum equation works well for the Passaic River. There-
fore, the COV of the reaeration-rate coefficient was estimated
to be 50% for the Passaic River.

In this paper, correlations between model parameters were
assumed to be zero. This is probably not true, especially for
the reach-varying parameters; however, no data are available
on the likely magnitude of these correlations. Therefore, rather
than selecting a correlation value without documentation, con-
sideration of uncorrelated parameters was selected. If pa-
rameters are positively correlated, this assumption results in
underprediction of the overall model-prediction uncertainty re-
sulting from uncertainty in model parameters. However, as de-
scribed in the following, the uncertainties in a few key pa-
rameters almost completely dominated the uncertainty of the
simulated DO, CBOD, ammonia, and chlorophyll a concen-
trations. Further, these key parameters most likely have strong
correlations between reaches. Thus, the key parameters iden-
tified in FORA would be unlikely to change if parameter cor-
relations were considered.

Determination of Key Sources of Uncertainty

FORA was applied to determine the parameters that signif-
icantly contributed to uncertainty in QUAL2E-Passaic esti-
mation of the lowest DO concentration and the highest CBOD,
ammonia, and chlorophyll a concentrations throughout the
Passaic River corresponding to 7-day, 10-yr low flow with
typical effluent discharges. The derivatives required in FORA
were determined numerically by increasing the parameters val-

application of a 5% increment in the parameter values was
recommended by Brown and Barnwell (1987) for uncertainty
calculations in QUAL2E-UNCAS. The locations of the lowest
DO concentration and the highest CBOD, ammonia, and chlo-
rophyll a concentrations were reach 3, element 1; reach 2,
element 1; reach 2, element 1; and reach 32, element 6, all
shown in Fig. 1. In the FORA, all system-wide parameters and
the reach-varying parameters for the reach in which the key
output concentrations resulted (reach N) and the reach up-
stream (reach N — 1) were considered model parameters that
could potentially have a significant effect on simulation uncer-
tainty.

The contribution in percent of key model parameters to the
variance in the lowest DO concentration and the highest
CBOD, ammonia, and chlorophyll a concentrations throughout
the Passaic River estimated in QUAL2E-Passaic for the 7-day,
10-yr low flow with typical effluent discharges is listed in Ta-
ble 2. Five parameters account for more than 90% of the es-
timation variance in the key constituents: reaeration rate and
ammonia-oxidation rate for DO, CBOD-decay rate and CBOD-
settling rate for CBOD, ammonia-oxidation rate for ammonia,
and algal maximum-specific-growth rate for chlorophyll a.

Parameters related to CBOD would normally be expected
to significantly affect the lowest DO concentration. WWTPs
discharging into the Passaic River and tributaries already meet
rather stringent standards for secondary treatment and removal
of CBOD. Specifically, the permitted CBOD discharges from
the WWTPs discharging into the Passaic River range from 8
to 35 mg/L with an average of 20 mg/L; less than 24 mg/L
represents advanced treatment levels (NJDEP 1987). Thus,
with a relatively high level of CBOD removal already
achieved, CBOD related parameters have little affect on un-
certainty in the estimated lowest DO concentration. Further,
the effect of ammonia oxidation on the lowest DO concentra-
tion supports the current requirement to install nitrification
processes at WWTPs throughout the Passaic River Basin.

In sensitivity analysis, the key parameters are identified by
calculating and ranking the sensitivity coefficients. The sen-
sitivity coefficients are often normalized to provide a more
balanced ranking. The normalized sensitivity coefficients SN,
are defined as
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SN/J = (Aq/ Cp)/ (Ax;/x!o) (6)

where AC, = change in the estimated concentration of con-
stituent j resulting from change Ax; in parameter i with all
other parameters kept at their original values; Cy = estimated
concentration of constituent j when all parameters are at their
original values; and x, = original value for parameter i. The
rankings of the most important parameters determined in
FORA were compared with those from normalized sensitivity
analysis for DO and chlorophyll a concentrations. The results
from FORA and normalized sensitivity analysis are the same
for the five parameters having the largest effect on uncertainty
of estimated chlorophyll a concentrations. For estimates of DO
concentration, however, the rankings obtained from normal-
ized sensitivity analysis and FORA differ substantially as pre-
sented in Table 3.

The key model parameters affecting the variance in esti-

TABLE 3. Comparison of Ranking of Key Parameters Affect-
ing Estimated DO Concentrations Applying Normalized Sensi-
tivity Analysis and FORA

Rank among 17 Parameters
Estimated by
Normalized sen-
Model parameter sitivity analysis FORA
(1 (2) (3)
Reaeration rate (reach 3) 2 1
Reaeration rate (reach 2) 4 2
Ammonia oxidation rate (reach 3) 3 3
SOD rate (reach 2) 15 4
Ammonia oxidation rate (reach 2) 7 5
Oxygen uptake by ammonia oxidation 1 6
Algal maximum-specific-growth rate 4 7
Nitrification inhibition coefficient 4 12

TABLE 4. Locations Selected for Uncertainty Analysis

Reach- | River

No. | element |kilometer Remarks
(1) () ) (4)

1 2-1 0.80 |[Highest CBOD and ammonia concentrations

2 3-1 240 |Lowest DO concentration

3 6-13 12.40 —

4 8-7 20.40 —

5 9-11 30.00 —

6 12-12 42.40 —

7 184 53.20 —

8 20-3 64.40 —

9 25-1 74.80 —

10 | 29-5 84.40 —

11 32-6 94.00 |Highest chlorophyll a concentration
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FIG. 2. Monte Carlo Simulation Estimates of Mean and Stan-
dard Deviation of DO along Passaic River for Cases with All
Model Parameters Variable and Only Key Model Parameters
Variable

mates of the lowest DO concentration and the highest CBOD,
ammonia, and chlorophyll a concentrations were assumed to
affect significantly the variance in estimated DO, CBOD, am-
monia, and chlorophyll a throughout the Passaic River. Eleven
locations were selected to study model-prediction uncertainty
throughout the Passaic River (see Table 4). The locations were
fairly evenly distributed throughout the river and with diverse
values of the model parameters.

The key model parameters significantly affecting model
simulation uncertainty determined in FORA were tested with
Monte Carlo simulation. Results were compared from two sets
of Monte Carlo simulations: (1) All 10 systemwide and eight
reach-varying model parameters were considered uncertain;
and (2) only the parameters listed in Table 2 were considered
uncertain. The values for these parameters were generated in-
dependently in space. All model parameters were assumed to
be normally distributed. To obtain reasonable estimates of the
mean and standard deviation of the simulated constituent con-
centrations, 1,000 Monte Carlo simulations were made for
cases (1) and (2). When randomly generating the values of the
model parameters, occasionally a value is generated that is
physically unrealistic. Simulation applying unrealistic param-
eter values resulted in computational problems. Therefore, the
Monte Carlo simulation procedure was modified to omit phys-
ically unrealistic parameter values that resulted in computa-
tional failure.

The mean and standard deviation of the estimated DO,
CBOD, ammonia, chlorophyll a concentrations at the 11 lo-
cations listed in Table 4 are illustrated in Figs. 2-5, respec-
tively, for the two sets of Monte Carlo simulations. The results
of the two cases are generally in close agreement for all con-
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FIG. 3. Monte Carlo Simulation Estimates of Mean and Stan-
dard Deviation of CBOD along Passalc River for Cases with All
Model Parameters Variable and Only Key Model Parameters
Variable
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FIG. 6. FORA Estimates of Mean =1 Standard Deviation Error
Bar for QUAL2E-Passaic Simulations of DO in Passaic River

stituents as shown in Figs. 2—5. The largest difference is 0.15
mg/L in the standard deviation of CBOD. Overall, these results
indicate that the key parameters determined by FORA are ap-
propriate for QUAL2E-Passaic simulation of DO, CBOD, am-
monia, and chlorophyll a concentrations.

Constituent Prediction Uncertainty along the River
and Sampling Design

FORA was applied to estimate the mean and standard de-
viation of the estimated DO, CBOD, ammonia, and chloro-
phyll a concentrations at the 11 locations listed in Table 4.
The mean and one standard deviation error bars are presented
in Figs. 6-9 for DO, CBOD, ammonia, and chlorophyll a
concentrations, respectively. For chlorophyll a at upstream lo-
cations, CBOD, and ammonia, the one standard deviation error
bars are so small that they lie within the symbols for the mean
in Figs. 7-9. DO (Fig. 6) and chlorophyll a (Fig. 9) concen-
trations have large uncertainties along the river. Thus, the pa-
rameters significantly affecting the prediction uncertainty of
these constituents require additional sampling to reduce pa-
rameter uncertainty.

CBOD (Fig. 7) and ammonia (Fig. 8) concentration esti-
mates have very small standard deviations indicating that
model-parameter uncertainty has insignificant effects on pre-
diction uncertainty for these constituents in the QUAL2E-
Passaic estimations. This does not mean that these constituents
are reliably estimated in QUAL2E-Passaic because uncertain-
ties in CBOD, organic nitrogen, and ammonia loads could sig-
nificantly affect overall prediction uncertainty. However, it
does indicate that (1) additional sampling is not required; and
(2) special sampling programs need not be designed to more
accurately determine the model parameters that simulate the
CBOD and ammonia reactions in the Passaic River. The orig-
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FIG. 7. FORA Estimates of Mean +1 Standard Deviation Error
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FIG. 9. FORA Estimates of Mean =1 Standard Deviation Error
Bar for QUAL2E-Passaic Simulations of Chlorophyll a in Pas-
saic River

inal stream survey data are adequate to define these parame-
ters. Thus, the set of five parameters identified as significantly
affecting model-output uncertainty can be reduced to two par-
ameters for which additional data could be important: reaera-
tion-rate coefficient and algal maximum-specific-growth rate.
The ammonia-oxidation rate effect on DO is significant, but
ammonia concentration is predicted with low uncertainty with
respect to parameter uncertainty and additional data probably
would not improve the estimate of the ammonia-oxidation rate.

The reaeration rate can be measured directly in streams by
tracer methods. These measurements are relatively expensive
to make, but the potential reduction in model-prediction un-
certainty obtainable with these measurements is high. Bennett
and Rathbun (1972) report that the expected error of reaeration
rates determined by tracer methods is 15%, whereas it is about
65% for reaeration rates determined by DO balance methods
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FIG. 10. FORA Estimates of Exceedance Probability for Low-
est DO along Passaic River for Current Level of Model-Parame-
ter Uncertainty and Two Cases of Reduced Model-Parameter
Uncertainty
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FIG. 11. FORA Estimates of Exceedance Probability Curves
for Highest Chlorophyli a along Passaic River for Current Level
of Model Parameter Uncertainty and Two Cases of Reduced
Model-Parameter Uncertainty

(essentially equivalent to model calibration). Thus, the cost of
developing a reaeration-rate estimation equation or verifying
one of the standard equations for a specific river compared to
the relative reduction in prediction uncertainty is a promising
area for study. Yoon (1994) has studied the cost and reliability
of developing site-specific reaeration-rate estimation equations
in detail.

In the Passaic River, the uncertainty in chlorophyll a sim-
ulation is significantly large only in the downstream portion
of the river (Fig. 9). Thus, additional sampling to reduce the
uncertainty in the algal maximum-specific-growth rate should
be focused on in the downstream reaches of the river between
80 and 100 km from upstream.

Effects of Reduction in Parameter Uncertainty

Model-output uncertainty can be decreased by reducing the
uncertainty in key input parameters. FORA was applied to
compute the exceedance probability of the lowest DO concen-
tration and highest chlorophyll a concentration for the 7-day,

10-yr low flow with typical effluent discharges for three levels
of parameter uncertainty:

¢ CURRENT—the COV for each parameter as given in
Table 1 (the ‘‘current’’ level of parameter uncertainty)

* KHALF—the COVs of the parameters listed in Table 2
reduced by 50% and the COV for all other parameters
kept at the value shown in Table 1 (reflecting improved
knowledge of the key parameters, identified in FORA,
from carefully designed field sampling)

* DHALF—the COV of the dominant parameter (reaera-
tion-rate coefficient for DO and algal maximum-specific-
growth rate for chlorophyll a) reduced by 50% and the
COV for all other parameters kept at the value shown in
Table 1 (reflecting improved knowledge of two dominant
parameters from carefully designed field sampling)

The exceedance probabilities estimated by FORA for these
three cases are illustrated in Figs. 10 and 11 for DO and chlo-
rophyll a, respectively. The exceedance probability curve
would be a step function if the model simulation is completely
deterministic and perfectly reliable. As shown in Figs. 10 and
11, the reduction of the uncertainty in a single dominant pa-
rameter can greatly reduce the uncertainty of predictions of
DO and chlorophyll @ made in QUAL2E-Passaic. For exam-
ple, reducing the uncertainty in the reaeration-rate coefficient
from the CURRENT condition to the DHALF condition in-
creases the confidence that the lowest DO concentration will
be greater than 1 mg/L from 90 to 98%. The effect of reducing
the uncertainty in a single parameter is larger for chlorophyll
a than for DO because algal maximum-specific-growth rate
contributes 93% of the variance of estimated chlorophyll a
concentrations, whereas reaeration rate contributes 74% of the
variance of estimated DO concentrations (Table 2).

CONCLUSIONS

This paper has illustrated that a simple method based on
FORA may be applied to determine key sources of uncertainty
affecting prediction uncertainty for complex water-quality
models. The method is as follows:

1. A literature search is done and discussions are held with
experienced surface water-quality modelers to determine
the relative uncertainty in each of the model parameters.

2. FORA is applied to determine which of the parameters
in the multiconstituent water-quality model contribute
significant uncertainty to the simulation of key water-
quality constituents. The identified parameters become
the focus of data collection to improve model-prediction
uncertainty.

3. FORA is applied to determine the prediction uncertainty
for the key water-quality constituents. If any of these
constituents have acceptably low prediction uncertainty,
further data collection to more accurately determine the
parameters significantly affecting simulation of this con-
stituent will not result in improved simulation.

FORA is applied for computational efficiency, producing re-
sults equivalent to those from more computationally intensive
and theoretically correct reliability methods, such as Monte
Carlo simulation (Yoon 1994).

The reliability-analysis method was applied to determine the
key parameters affecting prediction uncertainty for dissolved
oxygen, carbonaceous biochemical oxygen demand, ammonia,
and chlorophyll a along the Passaic River in New Jersey sim-
ulated with QUALZ2E. The reliability analysis considered un-
certainties in 10 systemwide and eight reach-varying model
parameters. The uncertainty of estimated concentrations of
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CBOD and ammonia owing to model-parameter uncertainty
alone was found to be acceptably small. Data collection to
refine parameters significantly affecting these constituents
would not greatly reduce model-prediction uncertainty. The
uncertainty of estimated concentrations of DO and chlorophyll
a resulting from model-parameter uncertainty alone was found
to be significant. However, for each constituent, a single model
parameter had a dominant effect on prediction uncertainty
(reaeration-rate coefficient for DO and algal maximum-spe-
cific-growth rate for chlorophyll a). Reduction of the uncer-
tainty in reaeration rate and algal maximum-specific-growth
rate were shown to significantly improve model-prediction un-
certainty of DO and chlorophyll a, respectively.

Prediction uncertainty of four water-quality constituents
with a complex multiconstituent water-quality model involving
18 model parameters was found to be significantly improved
by reducing the uncertainty in only two of the model pa-
rameters. It is hoped that these results will encourage water-
quality modelers and planners to do similar reliability analyses
leading to more efficiently planned sampling programs to re-
duce model-prediction uncertainty.
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APPENDIX Il. NOTATION

The following symbols are used in this paper:

C = concentration of the water-quality constituent simulated
in the selected water-quality model;

Cyp = estimated concentration of constituent j when all uncer-
tain basic variables are at their original values in nor-
malized sensitivity analysis;

Cr = target concentration whose exceedance probability is
sought;

g() = functional representation of the water-quality model pro-

cedures used to simulate a given water-quality constitu-

ent;

exceedance probability;

number of uncertain basic variables (model-input varia-

bles, model parameters, etc.);

SN;; = normalized sensitivity coefficient of constituent j to un-
certain basic variable i;

X, = vector of uncertain basic variables (model-input variables,
model parameters, etc.) representing expansion point;

X,, = vector of means of uncertain basic variables (model-input
variables, model parameters, etc.);

X = original value for uncertain basic variable i in normalized
sensitivity analysis;

AC; = change in estimated concentration of constituent j result-
ing from change Ax; in uncertain basic variable i with all
other parameters kept at their original values;

Ax; = change in uncertain basic variable i;
oc = standard deviation of water-quality constituent simulated
in the selected water-quality model;
o, = standard deviation of uncertain basic variable i; and
®() = standard normal integral.
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