
CHAPTER 5.  
EXPERIMENTAL RESULTS: SHEAR PARTITIONS  

 

5.1. Overview 
 

The distribution of shear stresses, both local and spatially averaged, is of particular 

interest in open-channel flows as it provides insight into both the nature of the flow and 

the capacity of the flow to move sediment.  With bedforms present, Reynolds stress 

profiles have been shown from laboratory experiments to be different from those in flat-

bed situations (Bennett and Best, 1995; Nezu and Nakagawa, 1993).    The nature of the 

local shear stress distribution is of some importance in understanding the dominant 

mechanisms of flow separation, boundary-layer development, and potential flow.  A 

conceptualization of the evolution of the local shear-stress behavior in flow over 

bedforms is given in figure 5.1.   Shear-stress distributions observed in the laboratory 

experiment of Nelson and others (1993) are shown in figure 5.2.   
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Figure 5.1—Evolution of the shear-stress distribution as proposed by Fedele and Garcia 

(2001) 
 

 

A conceptualization of the generalized appearance of the spatially averaged shear-stress 

profile as proposed by Fedele and Garcia (2001) is illustrated in figure 4.44. Two distinct 

regions of flow are present (corresponding to different scales of the flow), with the 

separation point between the layers corresponding to a maximum in the Reynolds stress.  

Fedele and Garcia (2001) refer to this interface level as the equilibrium level (z = εe), 

whereby at this location they assume that the velocity profiles from the two regions of 

flow match; there is negligible vertical momentum transfer, and that the velocity at this 

equilibrium level is equal to the vertically averaged mean velocity.  The two regions of 

flow and the associated velocity and shear-stress distributions are illustrated in figure 
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4.44.  The peak shear stress is assumed to occur at the equilibrium level, with the value of 

the shear stress at that point equal to the form shear stress ( 0τ ′′ ).  The value of the shear 

stress in its intersection with the bed is proposed to be equal to the grain shear stress (τ’0).  

 

 

 

Figure 5.2---Measurements of Reynolds stress over a laboratory dune ( Nelson and 
others,1993) 

 
 

 

Because ADCP beam velocities were not digitally stored1, the KANK-1 and MO-1 data 

sets have Reynolds stress data only for those locations where ADV data were collected.  

Thus, it is difficult to make many definitive statements regarding shear-stress 

distributions for these data sets.  For the MO-2 data set, ADV data were collected at 

numerous points at each vertical, allowing good definition of Reynolds stresses 

throughout the water column.  In addition, as a backup, beam velocities were stored for 

MO-2 data sets, which allows computation of the Reynolds stress from the ADCP data.   

                                                           
1 A special command must be given to the RD Instruments Rio Grande ADCP to store beam 
velocities, as this is not done automatically.  Beam velocities are required to compute Reynolds 
stress in the methods outlined in Stacey and others (1999) (see equation 3.1). 
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This chapter attempts to provide insight into two main issues: 1) how does the shear-

stress profile found in laboratory experiments compare with that found in the field, and 2) 

how do current shear-partition models compare with field data.  To look into these issues, 

Reynolds stress data is supplemented by estimates of local shear stress at the bed 

computed from the local shear velocity (which can be computed from the local velocity 

profile) along with use of the bulk shear stress (τ0) computed from the product of the 

water slope and average flow depth.  In addition, the value of the coefficient, Cd, found in 

the form drag closure will be evaluated.    

 

 

5.2. Shear Stress Field Data 
 
 

The local shear-stress distributions from ADV data in the MO-2 experiment are presented 

in figure 5.3, with more detailed “close-ups” of the individual data shown in figures 5.4-

5.6.  The MO-2 data and the laboratory data of Nelson and others (1993) (figure 5.2) and 

Bennett and Best (1995) are similar, with the stress increasing away from the bed in the 

near-bed wake regions behind the superimposed dunes, reaching a maximum near the 

center of these wake regions and then decreasing to the water surface.  The diffusion of 

the wake shear is evident in the evolution of the shear profile from X=28 m to X= 58 m, 

although the presence of smaller dunes along this length clouds the picture of shear 

profile relation with bed profile.  In general, the highest shear stresses are in the flow-

separation zones and along the shear layer, as also was noted in the laboratory data of 

Bennett and Best (1995).   
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Figure 5.3—Reynolds stress measurements from MO-2, at locations 1-15, with location 
11 omitted 
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Figure 5.4—Reynolds stress measurements for 0<x≤ 50 meters of the MO-2 profile,  
showing locations 1-5 
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Figure 5.5—Reynolds stress measurements for 50≤x≤100 meters of the MO-2 profile, 
showing locations 6-8 
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Figure 5.6—Reynolds stress measurements for 100≤x≤160 meters of the MO-2 profile, 
showing locations 9-15, except location 11 
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Spatial averaging of the Reynolds stresses along lines equidistant from the boundary for 

experiments KANK-1 and MO-2 are found in figures 5.7 and 5.8, respectively (Reynolds 

stress data for MO-1 are not available).  Although KANK-1 only had 3 ADV points (plus 

the water surface where τ=0), there is good indication that the shear stress distribution is 

nearly identical to equilibrium flat-bed flow, with a monotonically decreasing shear stress 

away from the bed. This similarity with flat-bed flow is consistent with the nature of the 

bedforms present on the KANK-1 bed (extremely long bedform length and small lee 

slope).  No discernable flow separation was present in the KANK-1 flow and the dune 

field was elongated, asymmetric, with a low ratio of dune height to flow depth.   

 

The MO-2 data are similar to the laboratory studies for flow over dunes, as the shear 

stress increases from the bed to a maximum at around 0.5 m elevation, then decreases to 

the water surface.    Comparison of laboratory and the MO-2 spatially averaged Reynolds 

stress distributions (figure 5.9) indicates good similarity in the bottom half of the flow 

when shear stress is nondimensionalized by dividing by the product of the density and the 

mean velocity squared.  In the upper half of the flow, the MO-2 data have a nearly linear 

decrease in shear stress to near zero at the water surface.  The laboratory data do not 

show this same decrease to zero near the water surface, but approach zero well below the 

water surface in both data sets.   As noted by Nelson and others (1993), this result is 

because of a lack of equilibrium flow conditions, as the flow nearly is inviscid above the 

point, where the shear stress goes to zero.     Equation 2.85 (restated here) is the 

momentum equation in the x direction can be simplified and given as: 
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where S is the bed slope, p is the pressure, wu ′′ , when multiplied by the density, ρ, is the 

Reynolds Stress or turbulent stress described in equation 2.63.  For steady-uniform 

equilibrium flow, the assumption is that the inertial terms (left-hand-side) and the 

pressure gradient are negligible as 0=∂
∂

x  and w = 0.  As pointed out by Nelson and 

others (1993), for even small deviations from equilibrium, the mean-flow momentum 

flux in the vertical (second term on the left side) is of the same order of magnitude as the 

gravitational (gS) and shear-stress divergence ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

′′∂
z
wu terms, causing the shear stress to 

go to zero below the water surface (figure 5.4).  However, for the MO-2 data set, the 

upper flow region approaches a quasi-equilibrium condition, which Nelson and others 

(1993, p 3944) assumed might result for longer reaches.    

 

The shear-stress partition data from the two Missouri River data sets are given in table 

5.1 (the Kankakee River data set was not partitioned as the Reynolds stress data indicates 

the flow is behaving as a flat-bed flow (figure 5.7)).   The total or bulk shear stress is the 

product of the unit weight of water, the average depth, and the water-surface slope.  The 

grain-shear stress is computed as the average of the near-bed local shear stresses from the 

near the point of reattachment to the point of separation (taken as the bedform crest).  

Wiberg and Nelson (1992) were interested in the mechanisms that control sediment 

transport and make the argument that “the boundary shear stress, and hence sediment 

transport, on the stoss side of a bedform are directed downstream only between the 
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reattachment point and the crest, it is over this region that boundary shear stress is 

averaged.”  The grain-shear stress is the part of the shear partition that moves the 

sediment as the form shear stress results from “a net pressure distribution over an entire 

bedform” and is, thus, “ineffective in moving bedload or entraining sediment” (Garcia, 

1999).  An estimate of the local near-bed shear stresses is determined by regression of the 

velocity profile in the bottom 20% to 25% of the flow depth.  A better estimate of the 

local near-bed shear stress would be to conduct linear regression only on that part of flow 

depth that is contained within the developing boundary layer (Nelson and Smith, 1989B).  

A method for determining the top of the developing boundary layer would be to examine 

the velocity profile and determine in log form where the profile is slightly convex 

downstream (because of acceleration of the internal boundary layer on the stoss side of 

the bedform) (Nelson and Smith, 1989B).  The data from this field study are not as 

detailed as data that can be collected in a laboratory environment. It is difficult to 

determine convexity of the field data at the refinement needed by the Nelson and Smith 

(1989B) method.    In the case of MO-2, with all the superimposed dunes, the velocity 

profiles used to compute the grain shear stress were those that approximately would 

simulate the developing boundary layer if only the larger dune were present.  Finally, 

form-shear stress is estimated as the difference between the bulk-shear stress and the 

grain-shear stress.  These estimates, although approximate, will be used to obtain the 

relative performance of the various shear-partition theories/models.   
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Figure 5.7—Spatial average of the Reynolds stresses for the KANK-1 data by averaging 
along lines of equal distance from the bed 
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Figure 5.8—Spatial average of the Reynolds stresses for the MO-2 data by averaging 
along lines of equal distance from the bed 
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Figure 5.9—Dimensionless spatially averaged shear stress and elevation  
 

 

 DATA SET τ  τ0’ τ0”        0
   (dynes/cm2) (dynes/cm2) (dynes/cm2) 
 MO-1 99.20 32.38 66.82 
 
 MO-2 81.18 24.60 56.58  
 
 (τ0= total or bulk shear stress, τ0’=grain shear stress,  τ0” = form shear stress  )  
 

Table 5.1—Shear-stress partition values for the MO-1 and MO-2 data 
 

 

The conceptualization of the shear partition by Fedele and Garcia  (2001) (figure 4.44) 

can be evaluated in light of the detailed shear-stress distribution data of MO-2 (figure 

5.8).   Fedele and Garcia propose that the location of the maximum shear stress 

corresponds to both the equilibrium level and the approximate form shear stress, whereas 
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the intersection of the shear-stress distribution with the bed roughly corresponds to the 

grain shear stress.  Fedele and Garcia (2001) come up with this postulation based on 

laboratory observations and the work of Lopez and Garcia (1999), where Lopez and 

Garcia used wall-similarity assumptions to propose that the extrapolated intercept of the 

Reynolds stress with the bed was equal to the grain shear stress, irrespective of bed 

roughness.  Fedele and Garcia (2001) discuss how this locus of shear stress maximum 

“indicates the relevant processes in turbulence and shear stress production, that is wake 

propagation and shear-layer diffusion, and purely wall-related turbulence.”, however, 

the author can find no physical reasoning behind why Fedele and Garcia (2001) equate 

the spatially averaged shear stress maxima to the form shear stress, other than laboratory 

observation.   Smith and McLean (1977, p. 1743) note that the increase of the shear stress 

away from the boundary (in the immediate vicinity of the boundary) is caused by the “z 

dependent pressure gradient”  (topographically induced pressure distribution).  It is 

reasonable to believe that by spatially averaging the shear-stresses, that the maximum of 

the spatial average would equal the form shear stress, which is an integration of the 

pressure gradient features over the reach.   

 

The flow velocity at the equilibrium level also is assumed to be equal to the mean 

velocity, which through the reasoning of Fedele and Garcia (2001) would imply that 

turbulence production becomes negligible above the equilibrium layer, with   

 

( ) Uuuudz
dz
duz

TT

H
2
*

2
* =+∫ ε

ε ρ
τ   . [5.1] 
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The blue line shown on figure 5.8 is how the Fedele and Garcia (2001) conceptualization 

would appear using the form and grain shear stresses computed for MO-2 (table 5.1). The 

equilibrium level was estimated based on the appearance of a discontinuity in the 

velocity plots in figure 4.30C.  There is a remarkably good fit between the observed data 

and the conceptualization.   However, the measured velocity at the equilibrium layer is 69 

cm/s (figure 4.30C), which almost is 40 cm/s less than the mean, flow velocity of 102.93 

cm/s (table 4.1).  This disparity indicates that the turbulence production above the 

equilibrium level is not negligible (equation 5.1) and contributes much to the total mean-

flow energy loss (as much as 30% of the contribution occurs above the equilibrium level 

in this data set).  This assumption used by Fedele and Garcia (2001) likely is a major 

contributor to the poor performance of their velocity model (Section 4.7).  The validity of 

the Fedele and Garcia (2001) conceptualization for the spatially averaged shear-stress 

distribution is not dependent on the associated velocity distribution conceptualization (it 

was based on laboratory observation).  However, any computation of the shear stress 

partition is jeopardized by the incorrect velocity model assumptions.   

 

 Fedele and Garcia (2001) based much of their postulation on the flume data from 

Bennett and Best (1995).   It is possible that the turbulent scale differences are large 

enough between the large river and the laboratory flume to induce a greater percentage of 

turbulence production in the outer region for large rivers than for the flume.  The MO-2 

data have Reynolds stresses approaching zero at the water surface as opposed to the 

laboratory data, which show a decrease to zero shear stress well below the water surface.  
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This decrease lends support to the idea that the turbulence production in the outer region 

for field-scale flows is larger as turbulence production, ( )
∫ dz

dz
duz

ρ
τ , is dependent on 

shear stress.  However, because of the natural sinuosity of field-scale flows, it must also 

be acknowledged that other factors, such as secondary currents (Nezu and Nakagawa, 

1993, p. 85), may influence the outer-flow region shear-stress distribution.   

 

The spatially averaged shear-stress distribution for MO-2 presented in figure 5.8 was 

computed by averaging along lines of equal distance from the bed at each location.  

Bennett and Best (1995) estimated the total shear stress as the spatial average of the local 

shear stresses along lines of equal elevation above a mean bed elevation for the 

developing boundary layer.  The intersection of the spatially averaged shear-stress 

distribution and the mean bed elevation was estimated as the total shear stress (figure 

5.10).  To determine the validity of this estimation method for field data, the shear stress 

data from the MO-2 data set were averaged in this same manner (figure 5.11).  The 

intersection of the spatially averaged shear-stress distribution and the mean bed elevation 

differed by more than 35% in comparison to the estimated total bed shear stress (81.18 

dynes/cm2) given for the MO-2 experiment in table 5.1.   
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Spatially averaged shear stress (dynes/cm2) 
 

Figure 5.10— Spatial average of the Reynolds stresses for the Bennett and Best flume  
data by averaging along lines of equal distance above the mean bed elevation (Bennett 

and Best, 1995) 
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Figure 5.11-- Spatial average of the Reynolds stresses for the MO-2 data by averaging 

along lines of equal distance above the mean bed elevation 
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5.3. Evaluation of Available Shear Partition Models with Field Data 
 

In alluvial rivers, shear partitioning is important in the computation of sediment transport, 

as grain shear stress is the predominant driving force for the resuspension and transport 

of sediment particles.  In addition, for computation of the stage-discharge relation, it is 

critical to understand the additional resistance imparted by the presence of bedforms.  

Two shear partition models (Einstein (1950) and Nelson-Smith (comes collectively from 

Smith and McLean, 1977; Wiberg and Nelson, 1992; and Nelson and others, 1993)) will 

be evaluated.  The method of Einstein (1950) requires no knowledge of bedform 

dimensions, unlike the Nelson-Smith method, that requires knowledge of bedform 

geometry.     

 

The method of Einstein (1950) was the first method to partition the shear stresses.  Garcia 

(1999) elucidates the Einstein method development in a much clearer and understandable 

manner than the original discussion contained in Einstein’s original paper. Thus, much of 

Garcia’s (1999) discussion is utilized to explain the method here.  The frictional 

resistance coefficient in equation 1.4, under Einstein’s theory, represents the resistance 

because of both grain and form effects.  Einstein postulated that the grain resistance 

could be computed as 

 

2
0 UC fsρτ =′    , [5.2] 
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where Cfs is the frictional resistance attributable to the grains.    Recalling that 

Keulegan’s relation for rough flow is 
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⎠
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⎛
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u
U 11ln1

* κ
    , [5.3] 

 

where U is the mean velocity, an assumption is made that this equation can be altered to 

become 

 

⎟⎟
⎠
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⎝

⎛ ′
=

′ sk
H

u
U 11ln1

* κ
    , [5.4] 

 

where  is the grain shear velocity and *u′ H ′ is the flow depth that would occur in the 

absence of bedforms.  If uniform flow is assumed, from equation 2.55 and following 

Einstein’s previously established line of reasoning, the grain shear stress is expressed as  

 

SHg ′=′ ρτ 0    . [5.5] 

 

 

Utilizing equations 1.7, 5.4, and 5.5, the portion of the depth attributable to the grain-

shear stress is 
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Assuming that the flow geometry, sediment bed-material characteristics, and mean 

velocity are known, Einstein’s method proceeds in the following steps. 

 

1. Assume some relation to compute ks, such as ks=2.5 D50. 

2. Iteratively compute H ′  from equation 5.6. 

3. Compute the grain shear stress from equation 5.5. 

4. The total shear stress can be computed from equation 2.55 as the water 

slope and average flow depth are known. 

5. Compute the form shear stress from equation 2.41. 

 

 

The method of Nelson-Smith has been explained previously in Section 2.2.  Equations 

2.52, 2.53, and 2.54 are of primary importance and are restated below for convenience. 

The form shear stress can be computed from the form drag divided by the area of the bed 

over which the force is applied as 

 

2
0 2

1
r

d
d U

H
C

λ
ρτ =′′    , [2.52] 

where Cd = drag coefficient (assuming 0.25 from the work of Smith and McLean,1977), 

Hd is the dune height, Ur denotes the reference velocity (corresponding to the mean 
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velocity between  z = ks and z = Hd if the dunes were not present), and  λ is the bedform 

wavelength.   From integration of the logarithmic velocity profile, Ur is given by the 

following equation as 
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Combining these two equations and assuming partitioning of the shear stress according to 

that of Einstein (1950) yields 
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Equation 2.54 can be reduced further to 
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Assuming that the flow geometry, dune geometry, and sediment bed material 

characteristics are known, the Nelson-Smith method proceeds in the following steps. 
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1. Assume some relation to compute ks, such as ks=2.5 D50. 

2. Compute the total shear stress from equation 2.55. 

3. Compute the grain shear stress from equation 5.7. 

4. Compute the form shear stress from equation 2.41. 

 

 

The results from applying the two shear-partition models to the two Missouri River field 

data sets collected as part of this research are given in tables 5.2 and 5.3.  Einstein’s 

method had an absolute average percent error of 11.3%, whereas the Nelson-Smith 

method had an absolute average percent error of 22.2% when the smaller bedforms were 

used as the geometry in the Nelson-Smith method.  The Einstein method performed 

particularly well with the MO-1 data set with a +1.0% error in estimating the form shear 

stress.  Obviously, these error percentages are relative to shear partition numbers that are 

produced through the assumption that the grain shear stress can be estimated effectively 

by averaging the shear velocities estimated from the local velocity profiles measured in 

the developing boundary layer.  The rationale for this method is discussed in Section 5.2. 

 

Through examination of the Nelson-Smith results for MO-2, it is clear that the better 

model fit comes when the smaller superimposed dunes are used as bedform geometry 

input parameters.  This better fit possibly implies that the smaller superimposed dunes are 

the controlling feature in regards to the generation of form shear stress.   
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 DATA  Obs. E %  N-S % 
 SET 0τ ′  0τ ′  Error 0τ ′  Error 
  (dynes/cm2) (dynes/cm2)  (dynes/cm2)   

 
 MO-1 32.38 34.57 +6.8 20.14 -37.8 
 
   Large Small Large Small 
 MO-2 24.60 18.21 -26.0 51.64 19.74 +110 -19.8 
   
 

(Obs, observed value; τ0’ is the grain shear stress; E, Einstein Method; N-S, 
Nelson-Smith Method; The N-S method used a Cd = 0.25 )  

 

Table 5.2—Grain-shear stress computed by the shear-partition methods of Einstein 
(1950) and Nelson-Smith (collectively from Smith and McLean, 1977; Wiberg and 

Nelson, 1992; and Nelson and others, 1993) 
 

 DATA Obs. E %  N-S % 
  0τ ′′  0τ ′′  Error 0τ ′′  Error 
  (dynes/cm2) (dynes/cm2)  (dynes/cm2)   

 
 MO-1 66.82 67.46 +1.0 81.89 +22.6 
 
   Large Small Large Small 
 MO-2 56.58 63.01 +11.4 29.57 61.47 -47.7 +8.6 
   
 

(Obs, observed value; τ0’’ is the form shear stress; E, Einstein Method; N-S, 
Nelson-Smith Method; the N-S method used a Cd = 0.25 ) 

 

Table 5.3—Form-shear stress computed by the shear-partition methods of Einstein 
(1950) and Nelson-Smith (collectively from Smith and McLean, 1977; Wiberg and 

Nelson, 1992; and Nelson and others, 1993) 
 

When evaluating the sensitivity of the drag-coefficient parameter, Cd, in the Smith-

Mclean model, a lesser effect is found than would first be assumed.  For example, 

doubling the drag coefficient  (from 0.25 to 0.50) only resulted in a 10% change in the 

final value of form stress for the MO-1 data.  Nonetheless, it is worthwhile to use the 
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present field data from this research to evaluate the value of the drag coefficient.   .  

Equation  5.7 can be manipulated to allow computation of the drag coefficient.   Cd is 

shown in table 5.4 for the two Missouri River experiments, MO-1 and MO-2 (note:  

KANK-1 was not included, as the flow approximated a  flat-bed flow)   

 

   Data Set (z0)n Cd
  
   MO-1 0.0025 cm 0.14 
 
   MO-2 0.0025 cm 0.21 
 

Table 5.4—Estimated drag coefficients 
 

 

 

The drag coefficients for MO-1 and MO-2 are close to the values found in the literature, 

which range from 0.21 (Smith and McLean, 1977)  to 0.23 (Wiberg and Nelson, 1992) to 

0.25 (Nelson and others, 1993).  Both MO-1 and MO-2 flows separated.  Smith and 

McLean (1977) conclude that for scenarios with no flow separation, a higher drag 

coefficient is warranted and suggested Cd=0.84.   This conclusion seems counterintuitive 

to the author, as the higher drag coefficients would stem from additional flow separation 

(drag coefficients is proportional to the drag force; equation 2.51).  Nelson and others 

(1993, p. 3,944) suggest that the interaction of spatial acceleration of the flow over dunes 

with the turbulence field is important in altering the form drag of bedforms.  Nelson and 

others (1993) saw a marked increase in the drag coefficient in one data set (Cd=0.45) with 

no spatial acceleration effects.   
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After reviewing the two methods, the author would recommend the Einstein (1950) 

method over that of Nelson-Smith.  This recommendation is based on both the better 

relative error estimates for Einstein and the need for bedform geometry in the Nelson-

Smith method.  As has been demonstrated in Sections 4.2 and 4.3, the bedforms 

encountered in the field are more complicated than what typically is defined as 

equilibrium dunes and, thus, prediction of the bedform geometry is difficult for field 

situations.   

 
5.4 Conclusions 
  

There are similarities in the local shear-stress distribution seen in the field and the 

laboratory data with the stress increasing away from the bed in the near-bed wake regions 

behind the superimposed dunes, reaching a maximum near the center of these wake 

regions and then decreasing to near zero at the water surface.  Comparison of laboratory 

and the MO-2 spatially averaged Reynolds stress distributions indicates good similarity 

in the bottom half of the flow when dimensionless elevation and shear stress 

(nondimensionalized by dividing by the product of the density and the mean velocity 

squared and the density) are used.  In the upper half of the flow, the MO-2 data revealed 

a quasi-equilibrium shear-stress distribution, with the shear stress linearly decreasing to 

zero near the water surface.  The MO-2 shear-stress distribution is unlike the laboratory 

data, which had shear stress distributions that linearly decreased away from the bed, but 

became zero well below the water surface, indicating a lack of dynamic equilibrium 

between the inertial and pressure forces.  
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The conceptualized spatially averaged shear-stress distribution of Fedele and Garcia 

(2001) fits the measured MO-2 data well, although the point velocity at the equilibrium 

level does not correspond to the mean velocity.  This result indicates that the turbulence 

production above this level is not negligible as postulated by Fedele and Garcia (2001).  

As the Fedele and Garcia (2001) conceptualization is based on laboratory data, it is 

possible that turbulence generation is much greater in the outer region of river-scale 

flows than for laboratory-scale flows.  

 

Two methods of shear partitioning:  1) Einstein (1950) and 2) Nelson-Smith (Smith and 

McLean, 1977; Wiberg and Nelson, 1992; and Nelson and others, 1993) were evaluated 

against form and grain shear stresses for the Missouri River data sets (MO-1 and MO-2) 

estimated using a methodology used by Nelson and others (1993).  Both of these methods 

require knowledge of the total shear stress.  Einstein’s method requires knowledge of the 

mean velocity, whereas the Nelson-Smith method requires knowledge of the bedform 

geometry.  Einstein’s method had an absolute average percent error of 11.3%, whereas 

the Nelson-Smith method had an absolute average percent error of 22.2% when the 

smaller bedforms were used as the geometry in the Nelson-Smith method. Through 

application of the Nelson-Smith model, it is apparent the smaller superimposed dunes are 

the controlling feature in regards to flow and stress distributions over bedforms.  The 

Einstein (1950) method is recommended over that of the Nelson-Smith method based on 

both the better relative error estimates being better for Einstein, and the need for bedform 

geometry in the Nelson-Smith method.   
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Drag coefficients were computed for each of the Missouri River data sets (MO-1 and 

MO-2).  The drag coefficients for MO-1 and MO-2 data were 0.14 and 0.21, respectively, 

which are comparable to those determined in other studies (Smith and McLean, 1977; 

Nelson and others, 1993).   
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